132 research outputs found

    Organ Size Regulation in Plants: Insights from Compensation

    Get PDF
    The regulation of organ size in higher organisms is a fundamental issue in developmental biology. In flowering plants, a phenomenon called “compensation” has been observed where a cell proliferation defect in developing leaf primordia triggers excessive cell expansion. As a result, final leaf size is not significantly reduced compared to that expected from the reduction in leaf cell numbers. Recent genetic studies have revealed several key features of the compensation phenomenon. Compensation is induced either cell autonomously or non-cell autonomously depending on the trigger that impairs cell proliferation; a certain type of compensation is induced only when cell proliferation is impaired beyond a threshold level. Excessive cell expansion is achieved by either an increased cell expansion rate or a prolonged period of cell expansion via genetic pathways that are also required for normal cell expansion. These results indicate that cell proliferation and cell expansion are coordinated through multiple pathways during leaf size determination. Further classification of compensation pathways and their characterization at the molecular level will provide a deeper understanding of organ size regulation

    Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis

    Get PDF
    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m-2 s-1), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis

    Cavity and entrance pore development in ant plant hypocotyls

    Get PDF
    Some genera of Rubiaceae in South-eastern Asia are known as typical ant plants. They have large domatia, which form in well-developed hypocotyls in which ants nest. Previously, cavity formation processes were described; however, these reports were dependent on tissue sections of different individuals of different ages. No continuous time-course analyses were done because cavity formation occurs inside the thick tissues of highly swollen domatia. Here we observed cavity formation processes in ant plants by using X-ray computed tomography (CT) imaging and revealed previously overlooked features of cavity formation. Firstly, the cavity pore occurs at the hypocotyl base in not only gravity-dependent but also basal position-dependent manner. Secondly, the cavity forms prior to the start of short tunnel formation between the cavity and the pore. The cavity axis is parallel to the longitudinal axis of the hypocotyl; however, the short tunnel axis between the pore and cavity depends on gravity. Non-invasive CT scanning is a very powerful method to analyze deeply hidden morphogenic processes in organs

    A new species of gastrodia (gastrodieae, epidendroideae, orchidaceae) from the Maliau Basin Conservation Area, Sabah, Borneo

    Get PDF
    Gastrodia Brown (1810: 330; Gastrodieae, Epidendroideae) comprises mycoheterotrophic orchids from throughout the temperate and tropical regions of Asia, Oceania, Madagascar and Africa (Chung & Hsu 2006, Cribb et al. 2010, Tan et al. 2012). The genus is characterized by fleshy tubers, as well as the absence of normal leaves, union of sepals and petals and two mealy pollinia that lack caudicles. Furthermore, many Gastrodia species within section Codonanthus (Schlechter 1911, Tuyama 1967) produce inflorescences that are only 3–15 cm in length at flowering (Chung & Hsu 2006) and, owing to their short flowering seasons and dwarf habits, are seldom noticed when flowering (Tuyama 1982, Suetsugu et al. 2012). The identification of Gastrodia species requires detailed observation of floral features, such as lip and column morphology, that are hidden within the perianth tube

    A new variety of Thismia hexagona Dancak, Hrones, Koblova et Sochor (Thismiaceae) from Sabah, Borneo, Malaysia

    Get PDF
    Thismia hexagona Dančák, Hroneš, Koblová et Sochor was recently reported from Brunei Darussalam. It is characterized by its unique yellow and brown coloration and sharply hexagonal flower annulus. Here, we also report its discovery during a botanical expedition in the Maliau Basin Conservation Area, Sabah, Borneo, Malaysia. The Malaysian individuals differ from the original description of T. hexagona in the opening angle and size of the perianth lobes. We therefore propose it as a new variety, T. hexagona var. grandiflora Tsukaya, M. Suleiman & H. Okada var. nov. Detailed morphological characters are provided

    ANGUSTIFOLIA3 Signaling Coordinates Proliferation between Clonally Distinct Cells in Leaves

    Get PDF
    SummaryCoordinated proliferation between clonally distinct cells via inter-cell-layer signaling largely determines the size and shape of plant organs [1–4]. Nonetheless, the signaling mechanism underlying this coordination in leaves remains elusive because of a lack of understanding of the signaling molecule (or molecules) involved. ANGUSTIFOLIA3 (AN3, also called GRF-INTERACTING FACTOR1) encodes a putative transcriptional coactivator with homology to human synovial sarcoma translocation protein [5–7]. AN3 transcripts accumulate in mesophyll cells but are not detectable in leaf epidermal cells [8]. However, we found here that in addition to mesophyll cells [5, 6], epidermal cells of an3 leaves show defective proliferation. This spatial difference between the accumulation pattern of AN3 transcripts and an3 leaf phenotype is explained by AN3 protein movement across cell layers. AN3 moves into epidermal cells after being synthesized within mesophyll cells and helps control epidermal cell proliferation. Interference with AN3 movement results in abnormal leaf size and shape, indicating that AN3 signaling is indispensable for normal leaf development. AN3 movement does not require type II chaperonin activity, which is needed for movement of some mobile proteins [9]. Taking these findings together, we present a novel model emphasizing the role of mesophyll cells as a signaling source coordinating proliferation between clonally independent leaf cells

    Design for controllability

    Full text link

    Position of meristems and the angles of the cell division plane regulate the uniqueness of lateral organ shape

    Get PDF
    花びらの形が葉と違う仕組みを解明. 京都大学プレスリリース. 2022-12-12.Leaf meristem is a cell proliferative zone present in the lateral organ primordia. In this study, we examined how cell proliferative zones in primordia of planar floral organs and polar auxin transport inhibitor (PATI)-treated leaf organs differ from those of non-treated foliage leaves of Arabidopsis thaliana, with a focus on the accumulation pattern of ANGUSTIFOLIA3 (AN3) protein, a key element for leaf meristem positioning. We found that PATI-induced leaf shape changes were correlated with cell division angle but not with meristem positioning/size or AN3 localisation. In contrast, different shapes between sepals and petals compared with foliage leaves were associated with both altered meristem position, due to altered AN3 expression patterns, and different distributions of cell division angles. A numerical simulation showed that meristem position majorly affected the final shape but biased cell division angles had a minor effect. Taken together, these results suggest that the unique shapes of different lateral organs depend on the position of the meristem in the case of floral organs and cell division angles in the case of leaf organs with different auxin flow
    corecore